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Local field dynamics in a resonant quantum tunneling system
of magnetic molecules
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Abstract. We observed non-exponential relaxation for a quantum tunneling molecular magnetic system
at very low temperatures and argue that it results from evolving intermolecular dipole fields. At the very
beginning of the relaxation, the magnetization follows a square-root time dependence. A simple model is
developed for the intermediate time range that is in good agreement with the data over 4 decades in time.
Detailed numerical calculations as well as measurements are presented which indicate unusual correlation
effects in these systems.

PACS. 75.45.+j Macroscopic quantum phenomena in magnetic systems – 61.46.+w Clusters,
nanoparticles, and nanocrystalline materials – 75.60.Ej Magnetization curves, hysteresis, Barkhausen
and related effects

Recent experiments have shown evidence of quantum
tunneling of the magnetization in the molecular nano-
magnetic systems Fe8 [1] and Mn12ac [2,3]. General the-
oretical considerations for quantum tunneling of a giant
spin through its anisotropy energy barrier have been pro-
posed during the last 10 years [4]. Both Fe8 and Mn12ac
can be thought of as an ensemble of identical, iso-oriented
nanomagnets of net spin S = 10 with an Ising like
anisotropy. Fe8 has the advantage in terms of tunneling
measurements in that its anisotropy energy barrier is ap-
proximately 24 K compared to 63 K for Mn12ac, and its
crystal symmetry affords a sizable transverse anisotropy,
both of which greatly enhance tunneling effects [1,4].

At low enough temperatures (below 400 mK and ap-
proximately 1.8 K, respectively) both systems display a
crossover from a thermal activated (over barrier) relax-
ation to a temperature independent relaxation [1,2] with
a remarkable resonant structure of the relaxation time as
a function of the external field [1,3]. Below these crossover
temperatures and after saturation in a high field, only the
mS = +10 state is occupied and the only way relaxation
can occur (at the first resonance field B = 0) is by un-
der barrier quantum tunneling from the mS = +10 to the
mS = −10 state.

Ideally, the relaxation for non interacting, identical
(giant) spins would be given by an exponential func-
tion M(t) ∝ exp(−t/τ). However, for Fe8 the data
in the low temperature regime is best approximated
by a stretched exponential M(t) ∝ exp(−(t/τstretch)β)
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with β ≈ 0.4 − 0.5 [1]. In this case, τstretch corresponds
to an “effective” relaxation time. A stretched exponential
fit is typical for spin-glasses [5] where strong interactions
between spins, frustration and disorder are present, and
at first seems a surprising result for Fe8. This behavior
was first reported for measurements made on powdered
samples of Fe8, but is also observed for measurements on
single crystals presented in this article, and implies that
distributions of size and orientation of particles may be
ruled out as its cause. However, disorder does enter the
system during the course of the relaxation: as spins flip
randomly due to tunneling, their individual dipole mo-
ments give rise to a distribution of random internal fields.
In addition, the surface and shape of real samples will
also give rise to sizable inhomogeneous internal fields. For
Mn12ac, the relaxation times in the pure quantum regime
are so long that a change of only a fraction of a percent of
the magnetization can be detected, even after periods of
weeks, and therefore no meaningful difference can be made
between single or stretched exponential behavior [2].

We present here new experimental evidence on Fe8
single crystals which shows that for “short times”
(< 100 seconds) the relaxation follows a square-root time
behavior. We propose a simple model which assumes a
narrow tunnel splitting and an evolving Gaussian distri-
bution of dipole fields that fits well the measured data for
“intermediate times” (< 105 seconds) and gives insight to
the origins of the observed stretch exponential relaxation.
Finally, computer simulations of the local fields, includ-
ing their dynamics are discussed in some detail for Fe8
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Fig. 1. The beginning 100 seconds of the relaxation of
the magnetization for a single crystal of Fe8, measured at
150 mK for the indicated applied fields versus square-root t.
(for each measurement, the sample was first saturated in a field
H > 35 kOe). The inset shows the distribution of τ−1

sqrt ex-
tracted from the above data as a function of field.

and compared to measurements, and show why at very
long times the simple model and stretch exponential be-
havior ultimately breaks down.

Recently, Prokof’ev and Stamp predicted for the
low temperature low field limit, that during the initial
part of the relaxation when very few spins have turned
(1−M/M0 � 1, with M0 the saturation value), the mag-
netization should decrease as the square root of time [8,9].
Their theory is based on a narrow tunnel splitting along
with an evolving Lorentzian field distribution and expli-
clty takes into account hyperfine fields. Figure 1 is a plot
of M versus

√
t for the beginning 100 seconds of a set of

relaxation measurements taken at different values of the
external applied field Hext. The measurements were made
at 150 mK on a roughly parallelepiped shaped single crys-
tal of Fe8 with the easy axis along the field direction, and
for each curve the sample was first saturated in a field
H > 35 kOe. (All measurements were made using a high
field low temperature SQUID magnetometer developed at
the CRTBT-CNRS, Grenoble.) Although any short part
of a relaxation curve may be fit to a variety of functions,
an important restriction is that the extrapolation of the
fits must coincide at t = 0. Taking this restriction into ac-
count, the best fit in the “short time” regime shows that
M decays linearly on a

√
t-scale as M(t) ∝ 1 −

√
t/τsqrt

where τ
−1/2
sqrt is the slope of the linear fit as shown in the

figure. In addition, τ−1
sqrt is predicted to be proportional

to the initial distribution of internal fields. The measured
field dependence of τ−1

sqrt is shown in the inset of Figure 1.
The resonance is centered at about H = +80 Oe, and has
a width of approximately 60 Oe.

Fig. 2. Long relaxation curve measured at 150 mK and in an
applied field of +80 Oe (i.e. at the maximum of τ−1

sqrt versus
H). The dashed line is the relaxation calculated by the model.

Figure 2 shows a long relaxation curve for the same
single crystal as Figure 1 plotted against the logarithm of
the time. The measurement was made at 150 mK and in
an applied field of +80 Oe, i.e. at the maximum of τ−1

sqrt.
For longer times we have developed a phenomenological
model that fits the measured data up to 105 seconds. For
this “intermediate time model” we assume a very narrow
natural resonance width, ∆tunnel, along with an evolving
Gaussian distribution of local fields. We define n±(B||, t)
as the fraction of the molecular clusters with spin up/down
(+/−), that are in a bias field B|| (the component of B
along the easy axis) at time t, and normalize n±(B||, t)
so that the total fraction n±(t) =

∫
n±(B||, t)dB of clus-

ters with spin up/down is n+(t)+n−(t) = 1. We factorize
n±(B||, t) = ρdipole(B||)n±(t) where ρdipole explicitly de-
scribes the local field distribution. As an ansatz we use
a Gaussian field distribution that is approximately valid
for an increasing number of independent, randomly placed
spins [10]. Thus

ρdipole(B||) =
1

√
2πσ

exp

(
−

(
B|| − µ

)2
2σ2

)
. (1)

where the variation of the width is given by σ(t)2 =
σ2

0n−(t), which describes the broadening of the distribu-
tion due to a growing number of turned spins. The center
of the distribution shifts like µ(n−(t)) = µ0(1 − 2n−(t))
due to demagnetization effects. (Experimentally we can
shift the distribution by applying a small external com-
pensation field so that the maximum is at B|| = 0). We
assume a tunneling probability for a given cluster to be

pqtm(B||) = τ−1
qtmδ(B||)∆tunnel (2)

where τ−1
qtm is the natural tunneling rate of a single iso-

lated molecule and δ(B||)∆tunnel represents a resonance
centered at B|| = 0, of width ∆tunnel [6]. Equation (2)
states that only clusters that are within the narrow res-
onance can tunnel and do so with the same rate. This
is in contrast to [8] where the authors take into account
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hyperfine field effects which allow for a variation of the
tunneling rate.

Using these definitions, we can now write a kinetic
equation which describes the dynamics of the model,
ṅ−(B||, t) = −pqtm(B||)[n−(B||, t) − n+(B||, t)]. Factor-
ing and integrating over B|| gives a differential equation
in n−(t):

ṅ−(t) = −τ−1
eff (n−)(2n−(t)− 1) (3)

where

τ−1
eff (n−) = τ−1

0 eff

exp(−bn−(t))√
n−(t)

(4)

is proportional to the fraction of clusters in resonance. The
fitting parameters are τ−1

0 eff = τ−1
qtm∆tunnel/

√
2πσ0, and

b = µ2
0/2σ

2
0. The differential equation (3) can be solved

numerically, e.g. with a Runge-Kutta algorithm, and gives
the relaxation of the magnetization via M(t) = 1−2n−(t).

The dashed line in Figure 2 is a fit to the relaxation
data. Excellent agreement with the data (less than 1%
error) was found over nearly 4 decades in time with the
parameters τ0 eff = 6.6 × 104 s and b = 7.95. Although
equation (3) still contains two fitting parameters, as does
a stretched exponential, the origin of the parameters is
better understood, along with their dependence on the
field distribution. An estimate for τqtm ∼ 0.1 − 1 sec-

onds can be obtained by using the parameter τ−1
0 eff and

the observed values of σ0 ∼ 100 gauss and assuming a
∆tunnel ∼ 10−4− 10−3 gauss [7,8]. This value is orders of
magnitude faster than τstretch obtained by fitting the data
to a stretch exponential [1] or τsqrt by fitting the data to
a square-root law for short times. It is remarkable that
the effective relaxation time of a stretched exponential or
square-root fit is of the same order as τ0 eff . Simply stated,
the relaxation time that we measure in an experiment is
∼ σ0/∆tunnel ∼ 105 times slower than the tunneling rate
of a single isolated molecule.

As expected, this model is not appropriate for very
short times, when a Lorentzian better describes the field
distribution [8,9]. For very long times, t > 105 seconds,
the error of the “intermediate time model” grows rapidly
and the model breaks down. A part of the problem is
simply that we do not expect a relaxation to a final value
of M = 0 because the measurements were made in a non-
zero field. Adding a constant, in order to take this into
account does help the fit. More interesting however is that
during the course of the relaxation, the field distribution
becomes increasingly distorted due to correlations which
develop between spins and the assumption of a Gaussian
field distribution equation (1) no longer holds.

We emphasize that the correlations are not caused
by exchange interactions between clusters or by magnetic
dipole forces which would try to align or anti-align the
spins. A spin can only flip via tunneling if the initial and
the final states are degenerate, i.e. the local field B = 0,
and therefore the magnetic energy of the spin does not
change. Correlations come about because the weak dipole
field of a spin that has tunneled can nevertheless lift the

degeneracy and remove from resonance a large number of
neighboring spins. These spins become effectively blocked
or frozen and most wait until some new configuration of
spins results in a local field close to zero. As an illustra-
tion, consider the ideal case of a spherical sample, with
all spins aligned after saturation. If a small external field
is applied in order to compensate for the demagnetiza-
tion field, the internal field B = 0 and all spins may be
brought into resonance at once. However, as the first few
spins begin to tunnel, the now uncompensated dipole fields
of each one will remove from resonance all other spins
within a radius r, where its dipole field ∼ 1/r3 is greater
than ∆tunnel. For S = 10, and a resonance width of 10−4

gauss, this corresponds to approximately ∼ 106 spins that
are pushed off resonance for each spin that tunnels! Thus
very quickly most spins will be blocked and only a small
fraction ∼ 10−6 of the relaxation occurs with this natural
rate. Nevertheless, the relaxation does not stop completely
because some spins in the vicinity of blocked regions may
still be free to flip. These spins can in turn un-block spins
in some overlapping volumes by compensating the internal
field such that once again B < ∆tunnel in those regions.
Then spins in these “newly liberated” volumes may flip,
blocking and un-blocking other parts, and so on. For very
long times, the blocked areas are so close that very few
spins remain in resonance. These may still tunnel back
and forth, but do not change M unless multiple flipping
occurs, which we have neglected in equation (3).

To better understand the dynamics of the field dis-
tribution, we have made numerical simulations of the
field distribution for different sample shapes and for dif-
ferent sizes up to 50 × 50 × 50 cluster sites per lattice.
The distribution of fields were calculated by taking into
account the individual ions within each cluster, as op-
posed to simply replacing each cluster by a giant spin 10,
which leads to spurious results. The field on an Fe3+ ion
spin at site i (within a cluster) due to the dipole field
of a given Fe3+ ion spin at site j outside the cluster,
was calculated using the classical magneto-static result
B(rij) = 3rij(mjrij)/|rij |5 −mj/|rij |3. The rij are the
spatial vectors pointing to the individual spins at their
respective positions [11] and mj the magnetic moment of
the ion. We assume that the easy axis is collinear with the
a-axis of the triclinic Fe8 crystal and in the following, we
refer to B||(rij) as the component parallel to this axis. We
define the local bias field at a site i as B||(ri) =

∑
j B||(rij)

where the sum j is over all the Fe3+ ions throughout the
sample, neglecting the self-field of the ions within the clus-
ter under consideration. We define the weighted dipole bias
field for a cluster to be Bw =

∑
i∈cluster B||(ri)mS,i/S

where the mS,i corresponds to the spin state of the i-
th ion within the cluster of 8 Fe3+ ion spins, i.e. for
mS = +10, there are 6 “up” ions mS,i = +5/2 and 2
“down” ions mS,i = −5/2, or vice versa for mS = −10,
where S= |mS|=10 is the total spin of the cluster [1,11].

Calculating Bw for every cluster gives the local field
distribution ρdipole(Bw) in the sample as shown in Fig-
ure 3. This particular calculation was made for a spher-
ical sample of 400 Å diameter, i.e. a homogeneous
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Fig. 3. Calculated local field distribution ρ(Bw) for a sherical
Fe8-sample of 400 Å diameter. The dashed line represents the
initial saturated state, the solid and bold lines are the stochas-
tic model and MC-simulations respectively, both for n− = 0.15

demagnetization field. We start from the saturated state
when n− = 0 and all spins are aligned which can be seen
as the sharp distribution centered at µ0 (dashed line). The
easy axis of the Fe8-crystal is somewhat shorter than the
others, which gives rise to a positive µ0 when the sam-
ple is saturated. This initial distribution evolves in differ-
ent ways if we turn clusters stochastically, i.e. neglecting
correlations (thin line), or if we turn according to Monte-
Carlo (MC) rules (bold line) discussed below.

The stochastic simulations show a gradually broaden-
ing of the distribution σ2 = σ2

n0n− with σn0 ≈ 400 gauss
and the center position of the distribution µ changes lin-
early with n−, thus µ = µnumeric0 (1−2n−). The stochastic
model represents a system where every spin is free to flip
independent of the field it experiences, as e.g. for ther-
mally activated relaxation. Thus pqtm = τ−1

TA = const.
(compared to Eq. (2)) and the relaxation is single expo-
nential as observed at high temperatures [1].

For the MC-simulations, at each time step of the calcu-
lation, the giant spin of a cluster is free to change state by
tunneling with a rate τ−1

qtm, only if the value of the local
field (weighted dipole bias field) which it experiences at
the time is within ∆tunnel of the resonance (Eq. (2)). As
usual, we have assumed that a constant external field is
applied that shifts the maximum of the initial local dipole
field distribution to the resonance. We have exaggerated
the width of the resonance, taking ∆tunnel = 1 gauss.
This is necessary due to the limited size of the simula-
tions. Even so, most clusters at any given time do not fall
within the resonance range and are blocked. Although the
size of our simulation is limited, the MC-simulations give
a stretched exponential relaxation whose actual shape is
very sensitive to the chosen values of τqtm and ∆tunnel and
which have common features for the field distributions.

We have measured the effects of quantum tunnelling on
the distribution of relaxation times as shown in Figure 4.

Fig. 4. Three distribution curves of τstretch and τsqrt versus
field measured at 80 mK on a roughly spherical single crystal
of Fe8. For each curve, the sample was prepared using differ-
ent procedures involving the magnetic or thermal history as
explained in the text.

Our numerical simulations can be qualitatively compared
to these measurements, and the three curves in the figure
correspond roughly to those of the simulations. All three
measurements were made at 80 mK on an approximately
spherical single crystal, however the sample was prepared
in different ways as we shall explain below.

The sharp peaked “initial distribution” (τsqrt versus
field) was made with the magnetization always close to
the saturation value (1 −M/M0 � 1) and was obtained
by using the same procedure as that depicted in Figure 1
i.e. for each point the sample was first saturated, the field
was then rapidly decreased to a given target field, and the
relaxation of the magnetization was measured. Because
the sample was close to saturation, a fit to

√
t is appro-

priate. The peak in the distribution for this sample was
approximately +230 Oe with a width of ∼ 120 Oe. This
sharp peak corresponds roughly to the initial distribution
of our computer simulations.

The other two distribution curves were made at the
half demagnetized state M ≈ M0/2. However, there is
a tremendous difference in the two distributions curves
depending on how we arrive at M0/2.

The “thermal distribution” was made by rapidly
quenching the sample from 1 K to 80 mK in a field of
800 Oe, (i.e. field cooled magnetization). At 1 K and
800 Oe, M has an equilibrium value of M ≈M0/2. During
the rapid cooling to 80 mK (t < 30 seconds), the sample
does not have time to change its state, either by thermal
activation or tunneling (if present), and thus the thermal
distribution is frozen. The distribution was then measured
by sweeping the field at a fixed ramping rate, and mea-
suring the relaxation for 20 minutes at each field as shown
in the inset Figure 4. A τstretch at each field was obtained
by a fit to a stretch exponential with β = 1/2.
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The “tunneling distribution” was made by first satu-
rating the sample in a high field, and then letting the sam-
ple relax in an applied field of +230 Oe (i.e. at the peak
of the initial distribution). During this time correlations
between the spins develop. After a period of 4 hours, the
magnetization decreases to M = M0/2, and at this point
we then swept the field up to 800 Oe as shown in the in-
set, again measuring the relaxation for 20 minutes at each
field, and obtaining τstretch from stretch exponential fits
with β = 1/2. The entire procedure was repeated for the
decreasing field sweep.

The difference between the thermal and quantum tun-
neling distributions is striking. The former is broad, and
well fit by a Gaussian distribution (solid line) of width
∼ 400 Oe indicating the random nature of the distribution
similar to the stochastic simulations. The tunneling dis-
tribution is distorted, similar to the Monte-Carlo results,
showing a depletion of the spins at the initial resonance
which we believe are due the growth of correlation effects
in the quantum regime. This gradual distortion results in
the breakdown of the “intermediate time model”, because
less spins stay in resonance as predicted, and the relax-
ation becomes slower than the calculated curve (Fig. 2).

Finally, we point out that the field value at which we
observe the fastest relaxation for the “initial distribution”
is not fully understood. We noticed that its position is
changing with the sample geometry (long sample: ∼ +80
gauss, spherical sample: ∼ +230 gauss) which should be
related to the different demagnetization fields. But it can
be seen from general consideration as well as from the
numerical simulations that the average internal field in a
saturated sample is positive and in consequence should
imply a negative counterbalancing field, which is not the
case.

In conclusion, we have given new evidence that inter-
molecular dipole fields are crucial in the understanding of
the relaxation process in this molecular magnetic system.

Although the data presented were for Fe8, we believe
the arguments are general, and must be taken into account
for other magnetic tunneling systems as e.g. Mn12.
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